Теорема Байеса

Голубой неоновый знак, обозначающий простое выражение формулы Байеса

Теорема Байеса (или формула Байеса) — одна из основных теорем элементарной теории вероятностей, которая позволяет определить вероятность какого-либо события при условии, что произошло другое статистически взаимозависимое с ним событие. Другими словами, по формуле Байеса можно более точно пересчитать вероятность, взяв в расчет как ранее известную информацию, так и данные новых наблюдений. Формула Байеса может быть выведена из основных аксиом теории вероятностей, в частности из условной вероятности. Особенность теоремы Байеса заключается в том, что для её практического применения требуется большое количество расчетов, вычислений, поэтому байесовские оценки стали активно использовать только после революции в компьютерных и сетевых технологиях.

При возникновении теоремы Байеса вероятности, используемые в теореме, подвергались целому ряду вероятностных интерпретаций. В одной из таких интерпретаций говорилось, что вывод формулы напрямую связан с применением особого подхода к статистическому анализу. Если использовать байесовскую интерпретацию вероятности, то теорема показывает, как личный уровень доверия может кардинально измениться вследствие количества наступивших событий. В этом заключаются выводы Байеса, которые стали основополагающими для байесовской статистики. Однако теорема используется не только в байесовском анализе, но и активно применяется для большого ряда других расчетов.

Психологические эксперименты[1] показали, что люди часто неверно оценивают вероятность события, на основе полученного опыта (апостериорная вероятность), поскольку игнорируют саму вероятность предположения (априорная вероятность). Поэтому правильный результат по формуле Байеса может сильно отличаться от интуитивно ожидаемого.

Теорема Байеса названа в честь её автора Томаса Байеса (1702—1761) — английского математика и священника, который первым предложил использование теоремы для корректировки убеждений, основываясь на обновлённых данных. Его работа «An Essay towards solving a Problem in the Doctrine of Chances» впервые опубликована в 1763 году[2], через 2 года после смерти автора. До того, как посмертная работа Байеса была принята и прочитана в Королевском обществе, она была значительно отредактирована и обновлена Ричардом Прайсом. Однако эти идеи не предавались публичной огласке до тех пор, пока не были вновь открыты и развиты Лапласом, впервые опубликовавшим современную формулировку теоремы в своей книге 1812 года «Аналитическая теория вероятностей».

Сэр Гарольд Джеффрис писал, что теорема Байеса «для теории вероятности, то же, что теорема Пифагора для геометрии»[3].

Содержание

Формулировка

Формула Байеса:

 ,

где

  — априорная вероятность гипотезы A (смысл такой терминологии см. ниже);
  — вероятность гипотезы A при наступлении события B (апостериорная вероятность);
  — вероятность наступления события B при истинности гипотезы A;
  — полная вероятность наступления события B.

Доказательство

Формула Байеса вытекает из определения условной вероятности. Вероятность совместного события   двояко выражается через условные вероятности

 

Следовательно  

Вычисление  

В задачах и статистических приложениях   обычно вычисляется по формуле полной вероятности события, зависящего от нескольких несовместных гипотез, имеющих суммарную вероятность 1.

 ,

где вероятности под знаком суммы известны или допускают экспериментальную оценку.

В этом случае формула Байеса записывается так:

 

«Физический смысл» и терминология

Формула Байеса позволяет «переставить причину и следствие»: по известному факту события вычислить вероятность того, что оно было вызвано данной причиной.

События, отражающие действие «причин», в данном случае называют гипотезами, так как они — предполагаемые события, повлекшие данное. Безусловную вероятность справедливости гипотезы называют априорной (насколько вероятна причина вообще), а условную — с учётом факта произошедшего события — апостериорной (насколько вероятна причина оказалась с учетом данных о событии).

Примеры

Пример 1

Событие   — в баке нет топлива, событие   — машина не заводится. Заметим, что вероятность   того, что машина не заведется, если в баке нет топлива, равняется единице. Тем самым, вероятность   того, что в баке нет топлива, равна произведению вероятности   того, что машина не заводится, на вероятность   того, что причиной события   стало именно отсутствие топлива (событие  ), а не, к примеру, разряженный аккумулятор.

Пример 2

Пусть вероятность брака у первого рабочего  , у второго рабочего —  , а у третьего —  . Первый изготовил   деталей, второй —   деталей, а третий —   деталей. Начальник цеха берёт случайную деталь, и она оказывается бракованной. Спрашивается, с какой вероятностью эту деталь изготовил третий рабочий?

Событие   — брак детали, событие   — деталь произвёл рабочий  . Тогда  , где  , а  .

По формуле полной вероятности

 

По формуле Байеса получим:

  

Пример 3

 
Древовидная диаграмма демонстрирует частотный пример. R, C, P и P c черточкой — это события, являющиеся редкими, общими, образцовыми и не образцовыми. Проценты в скобках вычисляются. Отметим, что значения трех независимых событий даны, поэтому возможно вычислить обратное дерево (смотрите на график выше).

Энтомолог предполагает, что жук может относиться к редкому подвиду жуков, так как у него на корпусе есть узор. В редком подвиде 98 % жуков имеют узор или P(Узор | Редкий) = 0,98 (P(Pattern | Rare) = 0,98). Среди обычных жуков только 5 % имеют узор. Редкого вида жуков насчитывается лишь 0,1 % среди всей популяции. Какова вероятность того, что жук, имеющий узор, относится к редкому подвиду или P(Редкий | Узор) (P(Rare | Pattern))?

Из расширенной теоремы Байеса получаем (любой жук может относиться либо к редким, либо к обычному (Common) виду):  

Пример 4 — парадокс теоремы Байеса

Предположим, при рентгеновском обследовании вероятность обнаружить заболевание туберкулезом у больного туберкулезом равна 0,9, вероятность принять здорового человека за больного равна 0,01. Доля больных туберкулезом по отношению ко всему населению равна 0,001. Найти вероятность того, что человек здоров, если он был признан больным при обследовании.

Обозначим через Б — событие, что человек больной, «Б» — событие, что обследование показало, что человек болен, а через З — событие, что человек здоров. Тогда заданные условия переписываются следующим образом:

P(«Б» | Б) = 0,9;
Р(«Б» | З)= 0,01;
Р(Б) = 0,001, значит P(З) = 0,999.

Вероятность того, что человек здоров, если он был признан больным равна условной вероятности:

Р(З | «Б»).

Чтобы её найти, вычислим сначала полную вероятность признания больным:

Р(«Б») = 0,999 × 0,01 + 0,001 × 0,9 = 1,089 %.

Вероятность «здоров» при диагнозе «болен»:

Р(З | «Б») = 0,999 × 0,01 / (0,999 × 0,01 + 0,001 × 0,9)= 91,7 %.

Таким образом, 91,7 % людей, у которых обследование показало результат «болен», на самом деле здоровые люди. Такой результат возникает по причине того, что вероятность ложноположительного результата хоть и мала, но на порядок больше вероятности обнаружить больного в произвольной группе людей. Туберкулез — редкое явление, поэтому и возникает такой парадокс Байеса. При возникновении такого результата лучше всего сделать повторное рентгеновское обследование. Эта рекомендация основана на гипотезе, что повторное исследование не зависит от предыдущего. Если бы повторное исследование было бы полностью независимо, то вероятность повторного ложноположительного диагноза можно было бы вычислить по формуле Байеса: Р(З | «Б», «Б») = 0,999 × 0,01 × 0,01 / (0,999 × 0,01 × 0,01 + 0,001 × 0,9 × 0,9) ≈ 10,98 %.

Варианты интерпретации вероятностей в теореме Байеса

Математически теорема Байеса показывает взаимоотношения между вероятностью события A и вероятностью события B, P(A) и P(B), условной вероятности наступления события А при существующем B и наступлении события B при существующем A, P(A | B) и P(B | A).

В общей форме формула Байеса выглядит следующим образом:

 

Значение выражения зависит от того, как интерпретируются вероятности в данной формуле.

Интерпретация Байеса

В интерпретации Байеса вероятность измеряет уровень доверия. Теорема Байеса связывает воедино доверие предположению до и после принятия во внимание очевидных доказательств. Например, кто-то предположил, что при подкидывании монетки она будет приземляться в 2 раза чаще решкой вверх, а орлом вниз. Первоначально степень доверия, что такое событие случится, монета упадет именно так — 50 %. Уровень доверия может увеличиться до 70 %, если предположение будет подтверждено доказательством.

Для предположения (гипотезы) A и доказательства B

  • P(A) — априорная вероятность гипотезы A, первоначальный уровень доверия предположению A;
  • P(A | B) — апостериорная вероятность гипотезы A при наступлении события B;
  • отношение P(B | A)/P(B) показывает, как событие B помогает изменить уровень доверия предположению A.

Частотная интерпретация

 
Иллюстрация частотной интерпретации

В частотной интерпретации теорема Байеса фиксирует количество произошедших событий (выходов) и определяет их вероятность. Например, предположим, что эксперимент проводился много раз. P(A) — количество раз, когда произошло событие A (измеряется в долях). P(B) — количество раз, когда произошло событие B (измеряется в долях). P(B | A) — частота (в долях) наступления события «B» без наступления события A. P(A | B) — наступление события A без наступления события B.

Роль теоремы Байеса лучше всего можно понять из древовидной диаграммы, которая представлена справа. Каждая из 2 диаграмм демонстрирует события A и B с положительным и отрицательным результатом, чтобы показать противоположность вероятностей на выходе. Теорема Байеса используется как связующее звено этих отличающихся частей.

Формы

События

Простая форма

Для событий A и B, при условии, что P(B) ≠ 0,

 

Во многих дополнениях к теореме Байеса указывается, что событие B известно и нужно понять, как знание о событии B влияет на уверенность в том, что произойдет событие A. В таком случае знаменатель последнего выражения — вероятность наступления события B — известен; мы хотим изменить A. Теорема Байеса показывает, что апостериорные вероятности пропорциональны числителю:

  (пропорциональность A для данного B).
Если говорить кратко: апостериорная вероятность пропорциональна априорной вероятности (смотри Lee, 2012, Глава 1).

Если события A1, A2, …, взаимоисключающие и исчерпывающие, то есть возможно только одно из событий, одновременно два события не могут случиться вместе, мы можем определить коэффициент пропорциональности, ориентируясь на то, что их вероятности в сумме должны составлять единицу. Например, для данного события A — само событие A и его противоположность ¬A взаимоисключающие и исчерпывающие. Обозначая коэффициент пропорциональности как C мы имеем:

  и  .

Объединив эти две формулы, мы получим, что:

 

Расширенная форма

Часто пространство событий (таких как {Aj}) определенно в терминах P(Aj) и P(B | Aj). Именно в этом случае полезно определить P(B), применив формулу полной вероятности:

 
 

В частности

 .

Непрерывные случайные величины

 
Диаграмма отображает смысл теоремы Байеса и применима к пространству событий, образованного непрерывными случайными величинами X и Y. Заметим, что по теореме Байеса для каждой точки в области существуют требования. На практике, эти требования могут быть представлены в параметрическом виде, с помощью обозначения плотности распределения как функция от x и y.

Рассмотрим пространство элементарных событий Ω, образованного двумя величинами X и Y. В принципе, теорема Байеса применяется к событиям A = {X = x} и B = {Y = y}. Однако выражения становятся равны 0 в точках, в которых переменая имеет конечную плотность вероятности. Для того, чтобы с пользой продолжать использовать теорему Байеса, можно её сформулировать в терминах подходящих плотностей (смотрите Вывод формул).

Простая форма

Если X непрерывна и Y дискретна, то

 

Если X дискретна и Y непрерывна,

 

Если как X, так и Y непрерывны,

 

Расширенная форма

 
Диаграмма, показывающая, как пространство событий, образованное непрерывными случайными величинами X и Y, часто определяется.

Непрерывное пространство событий часто определяется как числитель условий A. Непрерывное пространство событий часто представляют как числитель. В дальнейшем полезно избавиться от знаменателя, используя формулу общей вероятности. Для 'fY(y), это становится интегралом:

 

Правило Байеса

Правило Байеса — это преобразованная теорема Байеса:

 

где

 

Это называется правилом Байеса или отношением правдоподобия. Разница в вероятности наступления двух событий — это просто отношение вероятностей этих двух событий. Таким образом,

 ,
 ,

Вывод формул

Для событий

Теорема Байеса может быть получена из определения вероятности:

 
 
 
 

Для случайных переменных

Для двух непрерывных случайных величин X и Y теорема Байеса может быть аналогично выведена из определения условного распределения:

 
 
 

См. также

Примечания

Литература

Для дальнейшего изучения

  • McGrayne, Sharon Bertsch. The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines & Emerged Triumphant from Two Centuries of Controversy. — Yale University Press, 2011. — ISBN 978-0-300-18822-6.
  • Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin (2003), «Bayesian Data Analysis», Second Edition, CRC Press.
  • Charles M. Grinstead and J. Laurie Snell (1997), «Introduction to Probability (2nd edition)», American Mathematical Society (free pdf available [1].
  • Pierre-Simon Laplace. (1774/1986), «Memoir on the Probability of the Causes of Events», Statistical Science 1(3):364-378.
  • Peter M. Lee (2012), «Bayesian Statistics: An Introduction», Wiley.
  • Rosenthal, Jeffrey S. (2005): «Struck by Lightning: the Curious World of Probabilities». Harper Collings.
  • Stephen M. Stigler (1986), «Laplace’s 1774 Memoir on Inverse Probability», Statistical Science 1(3):359-363.
  • Stone, JV (2013). Chapter 1 of book «Bayes’ Rule: A Tutorial Introduction», University of Sheffield, England.

Ссылки